Artech House Library Recognition Telecommunication Voice
Click Here ===> https://blltly.com/2tfld0
Some speech recognition systems require \"training\" (also called \"enrollment\") where an individual speaker reads text or isolated vocabulary into the system. The system analyzes the person's specific voice and uses it to fine-tune the recognition of that person's speech, resulting in increased accuracy. Systems that do not use training are called \"speaker-independent\"[1] systems. Systems that use training are called \"speaker dependent\".
Speech recognition applications include voice user interfaces such as voice dialing (e.g. \"call home\"), call routing (e.g. \"I would like to make a collect call\"), domotic appliance control, search key words (e.g. find a podcast where particular words were spoken), simple data entry (e.g., entering a credit card number), preparation of structured documents (e.g. a radiology report), determining speaker characteristics,[2] speech-to-text processing (e.g., word processors or emails), and aircraft (usually termed direct voice input).
The term voice recognition[3][4][5] or speaker identification[6][7][8] refers to identifying the speaker, rather than what they are saying. Recognizing the speaker can simplify the task of translating speech in systems that have been trained on a specific person's voice or it can be used to authenticate or verify the identity of a speaker as part of a security process.
Simple voice commands may be used to initiate phone calls, select radio stations or play music from a compatible smartphone, MP3 player or music-loaded flash drive. Voice recognition capabilities vary between car make and model. Some of the most recent[when] car models offer natural-language speech recognition in place of a fixed set of commands, allowing the driver to use full sentences and common phrases. With such systems there is, therefore, no need for the user to memorize a set of fixed command words.[citation needed]
In the health care sector, speech recognition can be implemented in front-end or back-end of the medical documentation process. Front-end speech recognition is where the provider dictates into a speech-recognition engine, the recognized words are displayed as they are spoken, and the dictator is responsible for editing and signing off on the document. Back-end or deferred speech recognition is where the provider dictates into a digital dictation system, the voice is routed through a speech-recognition machine and the recognized draft document is routed along with the original voice file to the editor, where the draft is edited and report finalized. Deferred speech recognition is widely used in the industry currently.
The problems of achieving high recognition accuracy under stress and noise are particularly relevant in the helicopter environment as well as in the jet fighter environment. The acoustic noise problem is actually more severe in the helicopter environment, not only because of the high noise levels but also because the helicopter pilot, in general, does not wear a facemask, which would reduce acoustic noise in the microphone. Substantial test and evaluation programs have been carried out in the past decade in speech recognition systems applications in helicopters, notably by the U.S. Army Avionics Research and Development Activity (AVRADA) and by the Royal Aerospace Establishment (RAE) in the UK. Work in France has included speech recognition in the Puma helicopter. There has also been much useful work in Canada. Results have been encouraging, and voice applications have included: control of communication radios, setting of navigation systems, and control of an automated target handover system.
As in fighter applications, the overriding issue for voice in helicopters is the impact on pilot effectiveness. Encouraging results are reported for the AVRADA tests, although these represent only a feasibility demonstration in a test environment. Much remains to be done both in speech recognition and in overall speech technology in order to consistently achieve performance improvements in operational settings.
Training for air traffic controllers (ATC) represents an excellent application for speech recognition systems. Many ATC training systems currently require a person to act as a \"pseudo-pilot\", engaging in a voice dialog with the trainee controller, which simulates the dialog that the controller would have to conduct with pilots in a real ATC situation. Speech recognition and synthesis techniques offer the potential to eliminate the need for a person to act as a pseudo-pilot, thus reducing training and support personnel. In theory, Air controller tasks are also characterized by highly structured speech as the primary output of the controller, hence reducing the difficulty of the speech recognition task should be possible. In practice, this is rarely the case. The FAA document 7110.65 details the phrases that should be used by air traffic controllers. While this document gives less than 150 examples of such phrases, the number of phrases supported by one of the simulation vendors speech recognition systems is in excess of 500,000.
The use of voice recognition software, in conjunction with a digital audio recorder and a personal computer running word-processing software has proven to be positive for restoring damaged short-term memory capacity, in stroke and craniotomy individuals.
Speech recognition is also very useful for people who have difficulty using their hands, ranging from mild repetitive stress injuries to involve disabilities that preclude using conventional computer input devices. In fact, people who used the keyboard a lot and developed RSI became an urgent early market for speech recognition.[106][107] Speech recognition is used in deaf telephony, such as voicemail to text, relay services, and captioned telephone. Individuals with learning disabilities who have problems with thought-to-paper communication (essentially they think of an idea but it is processed incorrectly causing it to end up differently on paper) can possibly benefit from the software but the technology is not bug proof.[108] Also the whole idea of speak to text can be hard for intellectually disabled person's due to the fact that it is rare that anyone tries to learn the technology to teach the person with the disability.[109]
In terms of freely available resources, Carnegie Mellon University's Sphinx toolkit is one place to start to both learn about speech recognition and to start experimenting. Another resource (free but copyrighted) is the HTK book (and the accompanying HTK toolkit). For more recent and state-of-the-art techniques, Kaldi toolkit can be used.[122] In 2017 Mozilla launched the open source project called Common Voice[123] to gather big database of voices that would help build free speech recognition project DeepSpeech (available free at GitHub),[124] using Google's open source platform TensorFlow.[125] When Mozilla redirected funding away from the project in 2020, it was forked by its original developers as Coqui STT[126] using the same open-source license.[127][128] 153554b96e
https://www.iconikjewellery.co.uk/forum/business-forum/driving-license-verification-lahore
https://www.lenalinks.com/forum/fashion-forum/yoyo-xu-xiangting-from-taiwan-ra